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Abstract

All forms of cognition, whether natural or artificial, are subject to constraints of their

computing architecture. This assumption forms the tenet of virtually all general

theories of cognition, including those deriving from bounded optimality and bounded

rationality. In this letter, we highlight an unresolved puzzle related to this premise:

what are these constraints, and why are cognitive architectures subject to cognitive

constraints in the first place? First, we lay out some pieces along the puzzle edge, such

as computational tradeoffs inherent to neural architectures that give rise to rational

bounds of cognition. We then outline critical next steps for characterizing cognitive

bounds, proposing that some of these bounds can be subject to modification by

cognition and, as such, are part of what is being optimized when cognitive agents decide

how to allocate cognitive resources. We conclude that these emerging views may

contribute to a more holistic perspective on the nature of cognitive bounds, as well as

their alteration subject to cognition.
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Pushing the Bounds of Bounded Optimality and Rationality

Cognitive bounds form a tenet of general theories of cognition

All forms of cognition, whether natural or artificial, are subject to constraints of

the computing architecture, such as the inability to carry out an infinite number of

computations in parallel (Miller, 1956; Petri et al., 2021; Russell & Subramanian, 1994).

This assumption forms the tenet of all general theories of cognition, including those

deriving from bounded optimality and bounded rationality. Bounded optimality

assumes that cognitive agents maximize expected utility given limitations of their

computational architecture and environment (Russell & Subramanian, 1994). Relatedly,

bounded rationality (Gigerenzer, 2008; Simon, 1957; Todd & Gigerenzer, 2012) posits

that suboptimalities in human behavior arise from the use of heuristics rather than full

deliberation because of bounds on processing capacity and limited information. From

this point of view, the bounds of cognition can be considered the axioms of cognitive

theories. However, cognitive scientists lack consensus on what these bounds are and,

perhaps more importantly, why biological architectures are subject to these bounds in

the first place—a puzzle that poses significant challenges to a unifying theory of

cognition. In this letter, we seek to lay out some pieces along the puzzle edge by

examining the role of cognitive bounds for theories of cognition and propose a more

holistic perspective: Although cognition likely resides within a set of bounds, those

bounds may not all be fixed. Moreover, we argue that an important and still overlooked

part of cognition is its role in modifying some of those bounds.

Bounded optimality (Russell & Subramanian, 1994), including its extensions to

biological cognition (e.g., Gershman, Horvitz, & Tenenbaum, 2015; Griffiths, Lieder, &

Goodman, 2015; Kahneman, 2002; Lewis, Howes, & Singh, 2014; Lieder & Griffiths,

2020; Shenhav, Botvinick, & Cohen, 2013; Silvestrini, Musslick, Berry, & Vassena, 2022)

and behavioral economics (Caplin & Dean, 2015; Hébert & Woodford, 2019; Sims,

2003), are based on the principle that optimality in a computational system should be

evaluated in the context of the resources available to it. For instance, Russell and

Subramanian (1994) assume that bounded-optimal agents select a program of cognitive
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operations c∗,

c∗ = argmax
c

V (c, B, E) (1)

such that an agent maximizes their outcome value V (c, B, E) subject to the

bounds of their cognitive architecture B for a set of environments E. In artificial

systems (e.g., based on the von Neumann architecture; von Neumann, 1958), the

computational bounds B derive from resources with definable capacity, such as memory,

processing speed, or parallelization. These bounds characterize a landscape of tradeoffs

to be navigated, which amount to competing opportunity costs between, for example,

processing one task versus another. In biological systems, however, what the bounds

are, and perhaps more importantly, why they are there, remains unclear.

Cognitive bounds can reflect a rational response to computational tradeoffs

Following the structural constraints in the von Neumann architecture, one may

reasonably posit that the cognitive bounds of the brain reflect similar limitations.

However, the vast amount of structural capacity that the brain holds for

processing—billions of neurons operating in parallel—is unlikely to account for some

stark limitations, such as the inability to follow two conversations simultaneously.

Alternatively, resource theories argue that energetic costs (Attwell & Laughlin, 2001;

Lennie, 2003), often reflected in terms of limited metabolic resources (Gailliot et al.,

2007; Baumeister, Vohs, & Tice, 2007), underlie cognitive bounds. Yet, these models

have suffered strong critiques (Kurzban, Duckworth, Kable, & Myers, 2013; Shenhav et

al., 2017), and meta-analyses have failed to provide evidence in their favor (Carter,

Kofler, Forster, & McCullough, 2015; Friese, Loschelder, Gieseler, Frankenbach, &

Inzlicht, 2019; Hagger, Wood, Stiff, & Chatzisarantis, 2010). Moreover, accounts based

on structural or resource limitations struggle to explain why different types of cognition

are subject to different bounds. Why can the brain—unlike the von Neumann

architecture—effortlessly perform face recognition while it struggles with two-digit

arithmetic?

A recent point of view, buttressed on the analysis of neural network architectures,
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suggests that cognitive limitations do not reflect a bound on rational processing, but

rather a rational bound on processing (Musslick & Cohen, 2021). General theories of

cognition typically assume bounds on the number of computations that can be carried

out in parallel. Theories of human multitasking (i.e., parallel processing) attribute these

bounds to processing interference that arises if two or more cognitive processes call

upon the same local resources for different purposes (Allport, Antonis, & Reynolds,

1972; Feng, Schwemmer, Gershman, & Cohen, 2014; Meyer & Kieras, 1997; Musslick,

Saxe, Hoskin, Reichman, & Cohen, 2020; Navon & Gopher, 1979; Salvucci & Taatgen,

2008; Wickens, 1991). For example, following two conversations simultaneously may

require engaging the same neural resource representing language for different purposes,

yielding processing interference. But if the sharing of resources among cognitive

processes imposes a limitation in multitasking, then why would a cognitive system not

rely on separate resources for each cognitive process, thereby enabling interference-free

multitasking? (Imagine, for instance, each ear mapping onto a separate language area,

allowing the decoding of two conversations in parallel.)

The theoretical study of neural network architectures suggests that the sharing of

resources can facilitate learning and transfer (Baxter, 1995; Caruana, 1997; Musslick et

al., 2017). In fact, the benefit of faster learning can outweigh the costs of limitations in

parallel processing (Sagiv, Musslick, Niv, & Cohen, 2018; Ravi, Musslick, Hamin,

Willke, & Cohen, 2020). This tradeoff between learning efficacy through shared

representations, and processing efficiency through separated representations depends

upon the demands and statistics of the environment. Indeed, for language, the balance

seems to tip in favor of a shared representation, perhaps because our need to quickly

learn language surpasses our need to decode two conversations simultaneously (which

may not happen very often). However, in some cases, such as in visual object

recognition, where faces, places, and objects must all be simultaneously decoded on a

regular basis, the benefits of parallel processing may instead warrant the development of

separated, specialized representations. Thus, it can sometimes be rational, however

counter-intuitive, for a cognitive architecture to adopt limitations in parallel
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processing—a bound that can be considered as a result of the cognitive architecture

rather than an unexplained constant—precisely to capitalize on the learning benefits

that come with shared (capacity-limiting) resources.

Despite its ability to rationalize parallel processing limitations, rational

boundedness theory requires additional pieces to accommodate other bounds of human

cognition, such as limited working memory and cognitive fatigue. Auspiciously, recent

studies have begun to provide rational accounts of such limitations. For instance, an

emerging line of work suggests that cognitive fatigue may reflect the opportunity cost of

attending to one task at a time (Agrawal, Mattar, Cohen, & Daw, 2021; Kurzban et al.,

2013), or that the limit on attention allocated to a single task reflects a tradeoff between

cognitive stability and flexibility (Musslick, Jang, Shvartsman, Shenhav, & Cohen, 2018;

Ueltzhöffer, Armbruster-Genç, & Fiebach, 2015). This recent work notwithstanding, it

remains an open puzzle of how rational explanations for cognitive bounds integrate with

accounts proposing structural or metabolic limitations of the brain.1

Cognitive bounds can be subject to modification by cognition

The potential rationality of cognitive bounds does not, however, mean that the

bounds are fixed. Cognitive agents have the capability to change cognitive bounds as

seen with skill acquisition (Newell & Rosenbloom, 1981; Taatgen & Lee, 2003). Parallel

distributed processing models suggest that higher “automaticity” of a cognitive process

arises from decreased interference with other cognitive processes, resulting in greater

parallel processing capacity (Cohen, Dunbar, & McClelland, 1990; MacLeod & Dunbar,

1988; Posner & Snyder, 1975; Shiffrin & Schneider, 1977). Under this view, learning can

be regarded as an agent pushing the bounds of its own cognition. Thus, the

1 One potential avenue for conciliation may be that metabolic resources, such as extracellular

glutamate in the lateral prefrontal cortex, which was elevated in subjects enduring more cognitively

demanding tasks (Wiehler, Branzoli, Adanyeguh, Mochel, & Pessiglione, 2022), serve to indirectly

signal imbalances in competing computational demands rather than constituting a limited resource in

and of themselves—much like hormones indirectly signal imbalances in homeostasis rather than

constituting the primary limit of biological function.
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optimization problem posed by Russell and Subramanian (1994, Eq. (1)) becomes one

in which the bounds Bt+1 at a future point in time t + 1 can be expressed as a function

of cognitive operations applied at present time t,

Bt+1 = L(ct, Bt, E) (2)

where L corresponds to a learning function describing how cognitive operations

affect bounds of the computing architecture. For instance, recent neuroimaging and

computational work suggests that participants can push the bounds of their

multitasking capability by learning to separate representations between tasks

(K. Garner & Dux, 2015; K. G. Garner & Dux, 2022; Musslick & Cohen, 2019).

Similarly, learning to chunk visual features has been found to increase the effective

storage capacity of working memory, albeit at a loss in recall precision (Nassar,

Helmers, & Frank, 2018).

Cognitive agents may consider the modification of cognitive bounds

when allocating cognitive resources

The benefits of learning are clear, but what is less clear is how an agent decides

whether it is worthwhile to invest in learning. Practice and learning require an

opportunity cost of time and reward over prolonged periods. Nonetheless, people do

choose to learn despite these costs (e.g. mastering the piano). This phenomenon

suggests that people engage in managing their own cognitive bounds through learning.

This view comports with accounts that operationalize effort and information as

inherently rewarding, to explain seemingly irrational behavior (Inzlicht, Shenhav, &

Olivola, 2018). Furthermore, accounts on flow (Csikszentmihalyi, 1990; Melnikoff,

Carlson, & Stillman, 2022; Wilson, Shenhav, Straccia, & Cohen, 2019), boredom

(Geana, Wilson, Daw, & Cohen, 2016), curiosity (Schmidhuber, 1991), and fatigue

(Agrawal et al., 2021) suggest mechanisms for investing cognitive resources not only to

accommodate current bounds, but to optimally change those bounds. In line with

normative theories of learning (Dubey & Griffiths, 2020; Kidd & Hayden, 2015), human

infants and macaques will allocate attention to stimuli that are intermediately
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surprising (Cubit, Canale, Handsman, Kidd, & Bennetto, 2021; Wu et al., 2021), and

adults will self-organize their curricula to maximize learning and reward (e.g., Ten,

Kaushik, Oudeyer, & Gottlieb, 2021). This research extends to other organisms, such as

rats which have been found to manage their learning strategically, trading instant

rewards for faster learning (Masís, Chapman, Rhee, Cox, & Saxe, 2020).

As highlighted above, changing the bounds of cognition carries opportunity costs.

Recent work on rational boundedness proposes meta-cognitive processes that consider

these opportunity costs, e.g., when deciding between instant learning and future parallel

processing (Sagiv et al., 2018; Ravi et al., 2020; Musslick & Cohen, 2021). Such

meta-cognitive processes manage learning through the use of cognitive control, e.g., to

increase task automaticity (Masís, Musslick, & Cohen, 2021), or to adjust the

granularity of task representations (Ho et al., 2022). The nature of such meta-cognitive

processes, and their role in changing the bounds of cognition, remains an important

question in the pursuit of general theories of cognition.

Conclusion

The puzzle pieces outlined in this article point to a novel “rational boundedness”

perspective on bounded optimality and bounded rationality: Cognitive bounds can

reflect a rational response to computational tradeoffs inherent to the computing

architecture. Importantly, however, cognition is not just acting within these bounds,

but also shaping those bounds in a rational way over time. These emerging views may

aid in the development of a more holistic perspective on the nature of cognitive bounds,

as well as their alteration subject to cognition.

Acknowledgements

S.M. was supported by Schmidt Science Fellows, in partnership with the Rhodes

Trust, and the Carney BRAINSTORM program at Brown University. J.M. was

supported by the Presidential Postdoctoral Research Fellowship at Princeton University,

and by the NIH institutional training grant T32MH065214.



BOUNDS OF BOUNDED OPTIMALITY 9

References

Agrawal, M., Mattar, M. G., Cohen, J. D., & Daw, N. D. (2021). The temporal

dynamics of opportunity costs: A normative account of cognitive fatigue and

boredom. Psychological Review.

Allport, A., Antonis, B., & Reynolds, P. (1972). On the division of attention: A

disproof of the single channel hypothesis. Quarterly journal of experimental

psychology, 24 (2), 225–235.

Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter

of the brain. Journal of Cerebral Blood Flow & Metabolism, 21 (10), 1133–1145.

Baumeister, R. F., Vohs, K. D., & Tice, D. M. (2007). The strength model of

self-control. Current directions in psychological science, 16 (6), 351–355.

Baxter, J. (1995). Learning internal representations. In Proceedings of the eighth annual

conference on computational learning theory (pp. 311–320).

Caplin, A., & Dean, M. (2015). Revealed preference, rational inattention, and costly

information acquisition. American Economic Review, 105 (7), 2183–2203.

Carter, E. C., Kofler, L. M., Forster, D. E., & McCullough, M. E. (2015). A series of

meta-analytic tests of the depletion effect: Self-control does not seem to rely on a

limited resource. Journal of Experimental Psychology: General, 144 (4), 796.

Caruana, R. (1997). Multitask learning. Machine learning, 28 (1), 41–75.

Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic

processes: a parallel distributed processing account of the stroop effect.

Psychological review, 97 (3), 332.

Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience (Vol. 1990).

Harper & Row New York.

Cubit, L. S., Canale, R., Handsman, R., Kidd, C., & Bennetto, L. (2021). Visual

attention preference for intermediate predictability in young children. Child

development, 92 (2), 691–703.

Dubey, R., & Griffiths, T. L. (2020). Reconciling novelty and complexity through a

rational analysis of curiosity. Psychological Review, 127 (3), 455.



BOUNDS OF BOUNDED OPTIMALITY 10

Feng, S. F., Schwemmer, M., Gershman, S. J., & Cohen, J. D. (2014). Multitasking

versus multiplexing: Toward a normative account of limitations in the

simultaneous execution of control-demanding behaviors. Cognitive, Affective, &

Behavioral Neuroscience, 14 (1), 129–146.

Friese, M., Loschelder, D. D., Gieseler, K., Frankenbach, J., & Inzlicht, M. (2019). Is

ego depletion real? an analysis of arguments. Personality and Social Psychology

Review, 23 (2), 107–131.

Gailliot, M. T., Baumeister, R. F., DeWall, C. N., Maner, J. K., Plant, E. A., Tice,

D. M., . . . Schmeichel, B. J. (2007). Self-control relies on glucose as a limited

energy source: willpower is more than a metaphor. Journal of personality and

social psychology, 92 (2), 325.

Garner, K., & Dux, P. E. (2015). Training conquers multitasking costs by dividing task

representations in the frontoparietal-subcortical system. Proceedings of the

National Academy of Sciences, 112 (46), 14372–14377.

Garner, K. G., & Dux, P. E. (2022). Knowledge generalization and the costs of

multitasking. Nature Reviews Neuroscience, 1–15.

Geana, A., Wilson, R., Daw, N. D., & Cohen, J. (2016). Boredom, information-seeking

and exploration. In Cogsci (p. 6).

Gershman, S. J., Horvitz, E. J., & Tenenbaum, J. B. (2015). Computational rationality:

A converging paradigm for intelligence in brains, minds, and machines. Science,

349 (6245), 273–278.

Gigerenzer, G. (2008). Why heuristics work. Perspectives on psychological science,

3 (1), 20–29.

Griffiths, T. L., Lieder, F., & Goodman, N. D. (2015). Rational use of cognitive

resources: Levels of analysis between the computational and the algorithmic.

Topics in cognitive science, 7 (2), 217–229.

Hagger, M. S., Wood, C., Stiff, C., & Chatzisarantis, N. L. (2010). Ego depletion and

the strength model of self-control: a meta-analysis. Psychological bulletin, 136 (4),

495.



BOUNDS OF BOUNDED OPTIMALITY 11

Hébert, B. M., & Woodford, M. (2019). Rational inattention when decisions take time

(Tech. Rep.). National Bureau of Economic Research.

Ho, M. K., Abel, D., Correa, C. G., Littman, M. L., Cohen, J. D., & Griffiths, T. L.

(2022). People construct simplified mental representations to plan. Nature,

606 (7912), 129–136.

Inzlicht, M., Shenhav, A., & Olivola, C. Y. (2018). The effort paradox: Effort is both

costly and valued. Trends in cognitive sciences, 22 (4), 337–349.

Kahneman, D. (2002). Maps of bounded rationality: A perspective on intuitive

judgment and choice. Nobel prize lecture, 8 (1), 351–401.

Kidd, C., & Hayden, B. Y. (2015). The psychology and neuroscience of curiosity.

Neuron, 88 (3), 449–460.

Kurzban, R., Duckworth, A., Kable, J. W., & Myers, J. (2013). An opportunity cost

model of subjective effort and task performance. Behavioral and brain sciences,

36 (6), 661–679.

Lennie, P. (2003). The cost of cortical computation. Current biology, 13 (6), 493–497.

Lewis, R. L., Howes, A., & Singh, S. (2014). Computational rationality: Linking

mechanism and behavior through bounded utility maximization. Topics in

cognitive science, 6 (2), 279–311.

Lieder, F., & Griffiths, T. L. (2020). Resource-rational analysis: Understanding human

cognition as the optimal use of limited computational resources. Behavioral and

brain sciences, 43 .

MacLeod, C. M., & Dunbar, K. (1988). Training and stroop-like interference: evidence

for a continuum of automaticity. Journal of Experimental Psychology: Learning,

Memory, and Cognition, 14 (1), 126.

Masís, J., Chapman, T., Rhee, J. Y., Cox, D. D., & Saxe, A. M. (2020). Rats

strategically manage learning during perceptual decision making. bioRxiv.

Masís, J., Musslick, S., & Cohen, J. D. (2021). The value of learning and cognitive

control allocation. In Proceedings of the 43rd Annual Conference of the Cognitive

Science Society (pp. 1837–1843). Vienna, AT.



BOUNDS OF BOUNDED OPTIMALITY 12

Melnikoff, D. E., Carlson, R. W., & Stillman, P. E. (2022). A computational theory of

the subjective experience of flow. Nature communications, 13 (1), 1–13.

Meyer, D. E., & Kieras, D. E. (1997). A computational theory of executive cognitive

processes and multiple-task performance: Part i. basic mechanisms. Psychological

review, 104 (1), 3.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our

capacity for processing information. Psychological review, 63 (2), 81.

Musslick, S., & Cohen, J. D. (2019). A mechanistic account of constraints on

control-dependent processing: Shared representation, conflict and persistence. In

Proceedings of the 41st Annual Meeting of the Cognitive Science Society (pp.

849—855). Montreal, CA.

Musslick, S., & Cohen, J. D. (2021). Rationalizing constraints on the capacity for

cognitive control. Trends in Cognitive Sciences, 25 (9), 757–775.

Musslick, S., Jang, J. S., Shvartsman, M., Shenhav, A., & Cohen, J. D. (2018).

Constraints associated with cognitive control and the stability-flexibility dilemma.

In Proceedings of the 40th Annual Meeting of the Cognitive Science Society (pp.

806—811). Madison, WI.

Musslick, S., Saxe, A., Hoskin, A. N., Reichman, D., & Cohen, J. D. (2020). On the

rational boundedness of cognitive control: Shared versus separated

representations.

Musslick, S., Saxe, A., Özcimder, K., Dey, B., Henselman, G., & Cohen, J. D. (2017).

Multitasking capability versus learning efficiency in neural network architectures.

In Proceedings of the 39th Annual Meeting of the Cognitive Science Society (pp.

829—834). London, UK.

Nassar, M. R., Helmers, J. C., & Frank, M. J. (2018). Chunking as a rational strategy

for lossy data compression in visual working memory. Psychological review,

125 (4), 486.

Navon, D., & Gopher, D. (1979). On the economy of the human-processing system.

Psychological review, 86 (3), 214.



BOUNDS OF BOUNDED OPTIMALITY 13

Newell, A., & Rosenbloom, P. (1981). Mechanisms of skill acquisition. Cognitive skills

and their acquisition.

Petri, G., Musslick, S., Dey, B., Özcimder, K., Turner, D., Ahmed, N. K., . . . Cohen,

J. D. (2021). Topological limits to the parallel processing capability of network

architectures. Nature Physics, 17 (5), 646–651.

Posner, M. I., & Snyder, C. (1975). Attention and cognitive control. information

processing and cognition: The loyola symposium. Hillsdale NJ: Erlbaum.

Ravi, S., Musslick, S., Hamin, M., Willke, T., & Cohen, J. D. (2020). Navigating the

tradeoff between multi-task learning and learning to multitask in deep neural

networks. arXiv, 2007.10527.

Russell, S. J., & Subramanian, D. (1994). Provably bounded-optimal agents. Journal of

Artificial Intelligence Research, 2 , 575–609.

Sagiv, Y., Musslick, S., Niv, Y., & Cohen, J. D. (2018). Efficiency of learning vs.

processing: Towards a normative theory of multitasking. In Proceedings of the 40th

Annual Meeting of the Cognitive Science Society (pp. 1004—1009). Madison, WI.

Salvucci, D. D., & Taatgen, N. A. (2008). Threaded cognition: An integrated theory of

concurrent multitasking. Psychological review, 115 (1), 101.

Schmidhuber, J. (1991). Curious model-building control systems. In Proc. international

joint conference on neural networks (pp. 1458–1463).

Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control:

an integrative theory of anterior cingulate cortex function. Neuron, 79 (2),

217–240.

Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths, T. L., Cohen, J. D., &

Botvinick, M. M. (2017). Toward a rational and mechanistic account of mental

effort. Annual review of neuroscience, 40 , 99–124.

Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information

processing: Ii. perceptual learning, automatic attending and a general theory.

Psychological review, 84 (2), 127.

Silvestrini, N., Musslick, S., Berry, A., & Vassena, E. (2022). An integrative effort:



BOUNDS OF BOUNDED OPTIMALITY 14

Bridging psychological, cognitive and neuro-computational theories of effort and

control allocation. Psychological Review. doi:

https://doi.org/10.31234/osf.io/gn37y

Simon, H. (1957). Models of man; social and rational.

Sims, C. A. (2003). Implications of rational inattention. Journal of monetary

Economics, 50 (3), 665–690.

Taatgen, N. A., & Lee, F. J. (2003). Production compilation: A simple mechanism to

model complex skill acquisition. Human Factors, 45 (1), 61–76.

Ten, A., Kaushik, P., Oudeyer, P.-Y., & Gottlieb, J. (2021). Humans monitor learning

progress in curiosity-driven exploration. Nature communications, 12 (1), 1–10.

Todd, P. M., & Gigerenzer, G. E. (2012). Ecological rationality: Intelligence in the

world. Oxford University Press.

Ueltzhöffer, K., Armbruster-Genç, D. J., & Fiebach, C. J. (2015). Stochastic dynamics

underlying cognitive stability and flexibility. PLoS computational biology, 11 (6).

von Neumann, J. (1958). The computer and the brain. USA: Yale University Press.

Wickens, C. D. (1991). Processing resources and attention. Multiple-task performance,

1991 , 3–34.

Wiehler, A., Branzoli, F., Adanyeguh, I., Mochel, F., & Pessiglione, M. (2022). A

neuro-metabolic account of why daylong cognitive work alters the control of

economic decisions. Current Biology, 32 (16), 3564–3575.

Wilson, R. C., Shenhav, A., Straccia, M., & Cohen, J. D. (2019). The eighty five

percent rule for optimal learning. Nature communications, 10 (1), 1–9.

Wu, S., Blanchard, T., Meschke, E., Aslin, R. N., Hayden, B., & Kidd, C. (2021).

Macaques preferentially attend to intermediately surprising information. bioRxiv.


